Physics 129 A Fall 2004

Professor Freedman November 14, 2004

Problem Set# 8 (Due: November 22, 2004)

1. (Perkins 2.5) Draw Feynman diagrams (in terms of transitions at the quark level if hadrons are involved) for the following weak decays:

$$\pi^+ \to \mu^+ + \nu_{\mu}$$

$$\Lambda \to p + e^- + \nu_{\mu}$$

$$K^0 \rightarrow \pi^+ + \pi^-$$

$$\pi^+ \rightarrow \pi^0 + e^+ + \nu_a$$

Draw Feynman diagrams for the following strong decays:

$$\omega^0 \rightarrow \pi^+ + \pi^- + \pi^0$$

$$\rho^0 \rightarrow \pi^+ + \pi^-$$

$$\Delta^{{}^{\scriptscriptstyle ++}} \to p + \pi^{{}^{\scriptscriptstyle +}}$$

2. (Perkins 5.4) In an e⁺e⁻ colliding-beam experiment, the ring radius is 10 m and each beam forms a 10 mA current, with cross-sectional area of 0.1 cm². Assuming that the electrons and positrons are bunched and that the two bunches meet head-on twice per revolution, calculate the luminosity in cm⁻² s⁻¹ (a luminosity L provides a reaction rate of σL per second for a process of cross-section σ). From the Breit-Wigner formula (Perkins Eq. 2.28) calculate the cross-section for the reaction e⁺e⁻ $\rightarrow \pi^+\pi^-\pi^0$ at the peak of the ω resonance, assuming that the branching ratio for $\omega \rightarrow$ e⁺e⁻ is simply α^2 . Hence deduce the event rate per hour for this process with the above luminosity (m_{ω}c² = 783 MeV, J_{ω} = 1.)

- 3. What is the expected ratio of $\sigma(e^+e^- \rightarrow hadrons)$ to $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ at 2, 7 and 20 GeV?
- 4. Assuming two-flavor neutrino mixing, show that the probability for a \overline{v}_e of energy E (MeV) to be detected as a \overline{v}_e a distance L (km) away from where it is produced is given by:

$$P(\overline{v}_e \to \overline{v}_e) = 1 - \sin^2(2\theta)\sin^2(1.27\Delta m^2 L/E)$$

 $\Delta m^2 = |m_2^2 - m_1^2|$